(출처: Engineering Mechanics: DYNAMICS Fifth Edition in SI Units by Anthony Bedford and Wallace Fowler)
※ Bold symbols represent vectors and non-bold symbols represent scalar;
※ Below equation treats the secondary coordinate, which is rotating with the primary coordinate rotating;
(01) ω = Ω + ωrel
(02) α = dω/dt = dωx/dt i + ωx di/dt + dωy/dt j + ωy dj/dt + dωz/dt k + ωz dk/dt
(03) di/dt = Ω × i and di/dt = Ω × i and di/dt = Ω × i
(04) α = dωx/dt i + dωy/dt j + dωz/dt k + Ω × ω
(05) Σ MO = dHO/dt, HO = r1 × m1 dr1/dt + … + rn × mn drn/dt
(06) HO = r1 × m1(ω × r1) + … + rn × mn (ω × rn)
(07) ω = ωx i + ωy i + ωz k and rj = xj i + yj j + zj k
(08) by Superposition Principle,
(04) HOx = Ixxωx-Ixyωy-Ixzωz
(04) HOy =-Iyxωx + Iyyωy-Iyzωz
(04) HOz =-Izxωx-Izyωy + Ixzωz
(09) Ixx = m1(y12 + z12) + … + mn(yn2 + zn2)
(05) Iyy = m1(x12 + z12) + … + mn(xn2 + zn2)
(05) Ixx = m1(x12 + y12) + … + mn(xn2 + yn2)
(10) Ixy = Iyx = m1x1y1 + … + mnxnyn
(06) Iyz = Izy = m1y1z1 + … + mnynzn
(06) Ixz = Izx = m1x1z1 + … + mnxnzn
(11) HO = HOx i + HOy j + HOz k
(12) dHO/dt = dHOx/dt i + HOx di/dt + dHOy/dt j + HOy dj/dt + dHOz/dt k + HOz dk/dt
(13) Moment exerting from O
(10) Σ MO = dHOx/dt i + dHOy/dt j + dHOz/dt k + Ω × HO
(14) Σ MOx = Ixxdωx/dt-Ixydωy/dt-Ixzdωz/dt
-Ωz(-Iyxωx + Iyyωy-Iyzωz)
+ Ωy(-Izxωx-Izyωy + Izzωz)
(11) Σ MOy =-Iyxdωx/dt + Iyydωy/dt-Iyzdωz/dt
+ Ωz(Ixxωx-Ixyωy-Ixzωz)
-Ωx(-Izxωx-Izyωy + Izzωz)
(11) Σ MOz =-Izxdωx/dt-Izydωy/dt-Izzdωz/dt
-Ωy(Ixxωx-Ixyωy-Ixzωz)
+ Ωx(-Iyxωx-Iyyωy-Iyzωz)
(15) Matrix
(12) | Σ MOx | = | + Ixx -Ixy -Ixz | | dωx/dt | + | -0 y -Ωz + Ωy | | + Ixx -Ixy -Ixz | | ωx |
(12) | Σ MOy | = | -Iyx + Ixy -Ixz | | dωy/dt | + | + Ωz -0 y -Ωx | | -Iyx + Iyy -Iyz | | ωy |
(12) | Σ MOz | = | -Ixx -Ixy + Ixz | | dωz/dt | + | -Ωy + Ωx -0 z | | -Izx -Izy + Izz | | ωz |
(16) Inertia Matrix, | I |
(13) | + Ixx -Ixy -Ixz |
(13) | -Iyx + Ixy -Ixz |
(13) | -Ixx -Ixy + Ixz |
최근댓글