본문 바로가기

Contact English

【생물정보학】 NicheNet 이해하기

 

NicheNet 이해하기

 

추천글 : 【생물정보학】 리간드-수용체 상호작용 분석 


1. 개요 [본문]

2. 데이터셋 [본문]

3. 알고리즘 [본문]

4. 결론 [본문]


 

1. 개요 [목차]

⑴ 경로 활성화를 식별하고 관련된 잠재적인 리간드를 강조하는 툴

⑵ 즉, 특정 DEG가 있을 때 어떤 cell 혹은 어떤 ligand가 관련 있는지 구하는 것

⑶ 모식도 : 여러 데이터셋을 그래프 구조로 이어서 분석

 

출처 : 이미지 클릭

Figure. 1. NicheNet 모식도

 

⑷ 코드 : https://github.com/saeyslab/nichenetr

 

 

2. 데이터셋 [목차]

⑴ 종합 

① cpdb 

○ cpdb_interaction : Kamburov et al. (2013)

○ cpdb_complex : Kamburov et al. (2013)

② evex

○ lr_evex_regulation_expression : Van Landeghem et al. (2012)

○ evex_regulation_expression : Van Landeghem et al. (2012)

○ evex_catalysis : Van Landeghem et al. (2012)

○ evex_regulation_other : Van Landeghem et al. (2012)

○ evex_phosphorylation : Van Landeghem et al. (2012)

○ evex_regulation_binding : Van Landeghem et al. (2012)

○ evex_binding : Van Landeghem et al. (2012)

③ guide2pharmacology

○ pharmacology : Pawson et al. (2014)

④ harmonizome

○ harmonizome_KEA : Lachmann and Ma’ayan (2009)

○ harmonizome_PhosphoSite : Hornbeck et al. (2015)

○ harmonizome_kinase_substrate_predictions : Rouillard et al. (2016)

○ harmonizome_DEPOD : Duan et al. (2015)

○ harmonizome_CHEA : Lachmann et al. (2010)

○ harmonizome_ENCODE : Consortium (2004)

○ harmonizome_JASPAR : Mathelier et al. (2014)

○ harmonizome_TRANSFAC_CUR : Matys et al. (2006)

○ harmonizome_TRANSFAC : Matys et al. (2006)

○ harmonizome_MOTIFMAP : Xie et al. (2009)

○ harmonizome_GEO_TF : Edgar et al. (2002)

○ harmonizome_GEO_KINASE : Edgar et al. (2002)

○ harmonizome_GEO_GENE : Edgar et al. (2002)

○ harmonizome_MSIGDB_GENE : Subramanian et al. (2005)

⑤ HTRIDB 

○ HTRIDB : Bovolenta et al. (2012)

⑥ inweb_inbiomap

○ inweb_inbio_interaction : Li et al. (2017)

○ inweb_inbio_interaction_pathway : Li et al. (2017)

○ inweb_inbio_pathway : Li et al. (2017)

⑦ kegg

○ kegg_cytokines : Kanehisa et al. (2016)

○ kegg_cams : Kanehisa et al. (2016)

○ kegg_neuroactive : Kanehisa et al. (2016)

○ kegg_ecm : Kanehisa et al. (2016)

⑧ omnipath

○ omnipath_directional : Türei et al. (2016)

○ omnipath_undirectional : Türei et al. (2016)

⑨ ontogenet

○ ontogenet_coarse : Jojic et al. (2013)

⑩ pathwaycommons

○ lr_pathwaycommons_controls_expression_of : Cerami et al. (2011)

○ pathwaycommons_controls_expression_of : Cerami et al. (2011)

○ pathwaycommons_controls_phosphorylation_of : Cerami et al. (2011)

○ pathwaycommons_controls_state_change_of : Cerami et al. (2011)

○ pathwaycommons_catalysis_precedes : Cerami et al. (2011)

○ pathwaycommons_controls_transport_of : Cerami et al. (2011)

○ pathwaycommons_interacts_with : Cerami et al. (2011)

○ pathwaycommons_in_complex_with : Cerami et al. (2011)

⑪ ppi 

○ ppi_lr

○ ppi_l_bidir

○ ppi_bidir_r

○ ppi_bidir_bidir

○ ppi_lr_go

○ ppi_l_bidir_go

○ ppi_bidir_r_go

○ ppi_bidir_bidir_go

⑫ ramilowski

○ ramilowski_known : Ramilowski et al. (2015)

⑬ regnetwork

○ regnetwork_source : Liu et al. (2015)

○ regnetwork_encode : Liu et al. (2015)

⑭ Remap

○ Remap_5 : Griffon et al. (2015)

⑮ trrust

○ trrust : Han et al. (2015)

⑯ vinayagam

○ vinayagam_ppi : Vinayagam et al. (2011)

종류 2. protein-protein interaction

① Omnipath

② PathwayCommons

③ InWeb

④ ConsensusPathDB

⑤ Vinayagam et al

⑥ EVEX

⑦ KEA

⑧ PhosphoSite

⑨ DEPOD

⑩ Harmonizome kinase–substrate predictions

종류 3. gene regulatory interaction

① RegNetwork

② TRRUST

③ HTRIDB

④ ReMap

⑤ EVEX

⑥ PathwayCommons

⑦ Ontogenet

⑧ CHEA

⑨ ENCODE

⑩ JASPAR

⑪ TRANSFAC

⑫ MOTIFMAP

⑬ Gene Expression Omnibus (GEO)

⑭ MSigDBHarmonizome

 

 

3. 알고리즘 [목차]

단계 1. 한 개의 통합 네트워크가 아니라 두 개의 네트워크로 진행

 종류 1. protein–protein interaction for ligand–receptor and signaling data sources

종류 2. gene regulatory interaction in the gene regulatory network

단계 2. weighted sum of adjacency matrices

 

 

단계 3. mlrMBO를 이용한 parameter optimization

 mlrMBO : modular framework for model-based optimization of expensive black-box functions

단계 4. weighted matrix를 랜덤하게 생성

단계 5. ligand-target regulatory potential score 계산

 

 

단계 6. 모델 생성

① 목적 : 다중 data source 중 하나를 선별하기 위함 

종류 1. leave-one-in

종류 2. one-versus-one-versus-one

단계 7. validation 

① target gene prediction 평가

② ligand activity prediction 평가

③ cell type bias 평가

④ IPA(upstream regulator analysis of ingenuity pathway analysis)와의 비교

⑤ CCCExplorer와의 비교

단계 8. 다른 데이터셋에서의 적용 및 비주얼라이제이션

 

 

4. 결론 [목차]

⑴ CellPhonedB보다 더 좋다는 의견이 있음 

 

입력: 2023.09.15 11:15