8강. 회귀분석
추천글 : 【RStudio】 R 스튜디오 목차
1. 회귀 분석 이론 [본문]
2. 단순 선형 회귀분석 [본문]
3. 다중 선형 회귀분석 [본문]
4. 비선형 회귀분석 [본문]
1. 회귀 분석 이론 [목차]
⑴ 선형 회귀분석
⑵ 비선형 회귀분석
⑶ 고급 회귀분석
2. 단순 선형 회귀 분석 [목차]
x <- c(1, 2, 3, 4, 5)
y <- c(1.8, 4.2, 5.8, 7.4, 10.8)
RELATION <- lm(y ~ x)
names(RELATION)
# [1] "coefficients" "residuals" "effects" "rank"
# [5] "fitted.values" "assign" "qr" "df.residual"
# [9] "xlevels" "call" "terms" "model"
RELATION
# Call:
# lm(formula = y ~ x)
# Coefficients:
# (Intercept) x
# -0.36 2.12
summary(RELATION)
# Call:
# lm(formula = y ~ x)
# Residuals:
# 1 2 3 4 5
# 0.04 0.32 -0.20 -0.72 0.56
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.3600 0.5982 -0.602 0.58976
# x 2.1200 0.1804 11.754 0.00132 **
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Residual standard error: 0.5704 on 3 degrees of freedom
# Multiple R-squared: 0.9787, Adjusted R-squared: 0.9717
# F-statistic: 138.1 on 1 and 3 DF, p-value: 0.001324
RESIDUAL <- residuals(lm(y ~ x))
RESIDUAL
# 1 2 3 4 5
# 0.04 0.32 -0.20 -0.72 0.56
predict(RELATION, newdata = data.frame(x = c(6)), interval = "prediction")
# fit lwr upr
# 1 12.36 9.72952 14.99048
layout(matrix(1:4, 2, 2))
plot(RELATION)
layout(matrix(1))
plot(RELATION, which = 5)
3. 다중 선형 회귀 분석 [목차]
X1 <- c(1, 2, 3, 4, 5)
X2 <- c(0.3, -0.3, 0.3, -0.3, 0.3)
X3 <- c(0, 0, 0, 1, 0)
Y <- c(1.8, 4.2, 5.8, 7.4, 10.8)
RELATION <- lm(Y ~ X1 + X2 + X3)
summary(RELATION)
# Call:
# lm(formula = Y ~ X1 + X2 + X3)
# Residuals:
# 1 2 3 4 5
# 1.667e-01 1.388e-17 -3.333e-01 2.776e-17 1.667e-01
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.4583 0.4310 -1.063 0.4804
# X1 2.2500 0.1443 15.588 0.0408 *
# X2 -0.5278 0.8217 -0.642 0.6365
# X3 -1.3000 0.6455 -2.014 0.2934
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Residual standard error: 0.4082 on 1 degrees of freedom
# Multiple R-squared: 0.9964, Adjusted R-squared: 0.9855
# F-statistic: 91.51 on 3 and 1 DF, p-value: 0.07666 plot(RELATION)
4. 비선형 회귀분석 [목차]
⑴ probit regression model
X1 <- c(0, 1, 1, 0, 0)
X2 <- c(1, 0, 1, 0, 1)
X3 <- c(0, 0, 0, 1, 0)
Y <- c(1, 0, 0, 1, 0)
RELATION <- glm(Y ~ X1 + X2 + X3, family = binomial(link = "probit"))
summary(RELATION)
# Call:
# glm(formula = Y ~ X1 + X2 + X3, family = binomial(link = "probit"))
# Deviance Residuals:
# 1 2 3 4 5
# 1.17741 -0.00006 -0.00006 0.00006 -1.17741
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 1.813e-09 3.579e+03 0.000 1.000
# X1 -5.919e+00 2.531e+03 -0.002 0.998
# X2 -1.813e-09 3.579e+03 0.000 1.000
# X3 5.919e+00 4.383e+03 0.001 0.999
# (Dispersion parameter for binomial family taken to be 1)
# Null deviance: 6.7301 on 4 degrees of freedom
# Residual deviance: 2.7726 on 1 degrees of freedom
# AIC: 10.773
# Number of Fisher Scoring iterations: 18
⑵ logit regression model
X1 <- c(0, 1, 1, 0, 0)
X2 <- c(1, 0, 1, 0, 1)
X3 <- c(0, 0, 0, 1, 0)
Y <- c(1, 0, 0, 1, 0)
RELATION <- glm(Y ~ X1 + X2 + X3, family = binomial(link = "logit"))
summary(RELATION)
# Call:
# glm(formula = Y ~ X1 + X2 + X3, family = binomial(link = "logit"))
# Deviance Residuals:
# 1 2 3 4 5
# 1.17741 -0.00005 -0.00005 0.00005 -1.17741
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -9.139e-08 2.507e+04 0.000 1.000
# X1 -2.057e+01 1.773e+04 -0.001 0.999
# X2 9.139e-08 2.507e+04 0.000 1.000
# X3 2.057e+01 3.071e+04 0.001 0.999
# (Dispersion parameter for binomial family taken to be 1)
# Null deviance: 6.7301 on 4 degrees of freedom
# Residual deviance: 2.7726 on 1 degrees of freedom
# AIC: 10.773
# Number of Fisher Scoring iterations: 19
5. 고급 회귀분석 [목차]
⑴ 도구변수 회귀
install.packages("AER")
library(AER)
### dependent variable ###
Y <- c(1, 0, 0, 1, 0)
### endogenous variable ###
X <- c(0, 1, 1, 0, 0)
### included exogenous variable ###
W <- c(1, 0, 0, 0, 1)
### instrument variable (excluded exogenous variable) ###
Z <- c(1, 0, 1, 0, 1)
RELATION <- ivreg(Y ~ X + W | Z + W)
summary(RELATION)
# Call:
# ivreg(formula = Y ~ X + W | Z + W)
# Residuals:
# 1 2 3 4 5
# 5.000e-01 4.441e-16 4.441e-16 -8.882e-16 -5.000e-01
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.0000 0.8660 1.155 0.368
# X -1.0000 1.2247 -0.816 0.500
# W -0.5000 0.9354 -0.535 0.646
# Residual standard error: 0.5 on 2 degrees of freedom
# Multiple R-Squared: 0.5833, Adjusted R-squared: 0.1667
# Wald test: 0.4 on 2 and 2 DF, p-value: 0.7143
입력: 2019.11.09 23:25
'▶ 자연과학 > ▷ RStudio' 카테고리의 다른 글
【RStudio】 9강. ANOVA 분석 (0) | 2019.11.17 |
---|---|
【RStudio】 R 스튜디오 목차 (0) | 2019.11.02 |
【RStudio】 7강. 확률분포 (0) | 2019.10.28 |
【RStudio】 6강. 그래프 그리기 (0) | 2019.10.27 |
【RStudio】 5강. 데이터 입출력 (0) | 2019.10.27 |
최근댓글