IMO 기하 문제 풀이 (2005년 ~ 2009년)
추천글 : 【기하학】 IMO 기하 문제 풀이 종합
IMO 2005, Problem 1. Six points are chosen on the sides of an equilateral triangle ABC : A1, A2 on BC, B1, B2 on CA and C1, C2 on AB, such that they are the vertices of a convex hexagon A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2 and C1A2 are concurrent.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry 풀이 대상은 아니었습니다.
IMO 2005, Problem 5. Let ABCD be a fixed convex quadrilateral with BC = DA and BC ∦ DA. Let two variable points E and F lie on the sides BC and DA, respectively, and satisfy BE = DF. The lines AC and BD meet at P, the lines BD and EF meet at Q, the lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary, have a common point other than P.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)
==========================
* From theorem premises:
A B C D E F P Q R O1 O2 M : Points
DA = BC [00]
C,E,B are collinear [01]
FD = EB [02]
F,D,A are collinear [03]
P,C,A are collinear [04]
D,P,B are collinear [05]
F,Q,E are collinear [06]
D,Q,B are collinear [07]
R,C,A are collinear [08]
R,F,E are collinear [09]
O_1A = O_1P [10]
O_1P = O_1D [11]
O_2B = O_2P [12]
O_2P = O_2C [13]
O_2M = O_2P [14]
O_1M = O_1P [15]
* Auxiliary Constructions:
: Points
* Proof steps:
001. O_2B = O_2P [12] & O_2M = O_2P [14] & O_2P = O_2C [13] ⇒ C,M,P,B are concyclic [16]
002. C,M,P,B are concyclic [16] ⇒ ∠CMB = ∠CPB [17]
003. C,M,P,B are concyclic [16] ⇒ ∠CMP = ∠CBP [18]
004. C,M,P,B are concyclic [16] ⇒ ∠CPM = ∠CBM [19]
005. O_1A = O_1P [10] & O_1M = O_1P [15] & O_1P = O_1D [11] ⇒ P,M,D,A are concyclic [20]
006. P,M,D,A are concyclic [20] ⇒ ∠PDM = ∠PAM [21]
007. P,M,D,A are concyclic [20] ⇒ ∠PMA = ∠PDA [22]
008. P,M,D,A are concyclic [20] ⇒ ∠PMD = ∠PAD [23]
009. ∠CMB = ∠CPB [17] & P,C,A are collinear [04] & D,P,B are collinear [05] & ∠PDM = ∠PAM [21] ⇒ ∠DMA = ∠BMC [24]
010. ∠CMP = ∠CBP [18] & D,P,B are collinear [05] & ∠PMA = ∠PDA [22] ⇒ ∠DAM = ∠BCM [25]
011. ∠DMA = ∠BMC [24] & ∠DAM = ∠BCM [25] (Similar Triangles)⇒ DA:BC = DM:BM [26]
012. DA:BC = DM:BM [26] & DA = BC [00] ⇒ MB = MD [27]
013. F,A,D are collinear [03] & C,P,A are collinear [04] & ∠PMD = ∠PAD [23] ⇒ ∠(FD-PC) = ∠DMP [28]
014. C,P,A are collinear [04] & C,E,B are collinear [01] & ∠CPM = ∠CBM [19] ⇒ ∠PCE = ∠PMB [29]
015. ∠(FD-PC) = ∠DMP [28] & ∠PCE = ∠PMB [29] ⇒ ∠(FD-CE) = ∠DMB [30]
016. F,D,A are collinear [03] & C,E,B are collinear [01] & ∠(FD-CE) = ∠DMB [30] ⇒ ∠FDM = ∠EBM [31]
017. FD = EB [02] & DM = BM [27] & ∠FDM = ∠EBM [31] (SAS)⇒ ME = MF [32]
018. FD = EB [02] & DM = BM [27] & ∠FDM = ∠EBM [31] (SAS)⇒ ∠FME = ∠DMB [33]
019. MB = MD [27] & ME = MF [32] ⇒ MB:MD = ME:MF [34]
020. MB:MD = ME:MF [34] & ∠FME = ∠DMB [33] (Similar Triangles)⇒ ∠BDM = ∠EFM [35]
021. F,Q,E are collinear [06] & D,Q,B are collinear [07] & ∠EFM = ∠BDM [35] ⇒ ∠QFM = ∠QDM [36]
022. ∠QFM = ∠QDM [36] ⇒ F,D,M,Q are concyclic [37]
023. F,D,M,Q are concyclic [37] ⇒ ∠FDM = ∠FQM [38]
024. R,C,A are collinear [08] & P,C,A are collinear [04] & R,F,E are collinear [09] & F,Q,E are collinear [06] & ∠FDM = ∠FQM [38] & F,D,A are collinear [03] & ∠PMD = ∠PAD [23] ⇒ ∠RPM = ∠RQM [39]
025. ∠RPM = ∠RQM [39] ⇒ R,Q,M,P are concyclic
==========================
IMO 2007, Problem 4. In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the perpendicular bisector of BC at P, and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have the same area.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)
==========================
* From theorem premises:
A B C O R L K P Q L1 K1 : Points
OB = OC [00]
OA = OB [01]
OR = OA [02]
∠BAR = ∠RBA [03]
RA = RB [04]
A,L,C are collinear [05]
LC = LA [06]
B,K,C are collinear [07]
KC = KB [08]
P,K,O are collinear [09]
P,C,R are collinear [10]
L,Q,O are collinear [11]
Q,C,R are collinear [12]
L_1,C,R are collinear [13]
L_1L ⟂ CR [14]
K_1,C,R are collinear [15]
CR ⟂ K_1K [16]
* Auxiliary Constructions:
: Points
* Proof steps:
001. OB = OC [00] & KC = KB [08] ⇒ BC ⟂ KO [17]
002. OA = OB [01] & OB = OC [00] ⇒ OC = OA [18]
003. OC = OA [18] & LC = LA [06] ⇒ AC ⟂ LO [19]
004. L,Q,O are collinear [11] & L,A,C are collinear [05] & B,K,C are collinear [07] & P,K,O are collinear [09] & BC ⟂ KO [17] & AC ⟂ LO [19] ⇒ ∠QLC = ∠CKP [20]
005. OA = OB [01] & OR = OA [02] & OB = OC [00] ⇒ A,B,C,R are concyclic [21]
006. OA = OB [01] & OR = OA [02] & OB = OC [00] ⇒ O is the circumcenter of \Delta RCA [22]
007. OA = OB [01] & OR = OA [02] & OB = OC [00] ⇒ O is the circumcenter of \Delta RCB [23]
008. OA = OB [01] & OR = OA [02] & OB = OC [00] ⇒ OR = OC [24]
009. A,B,C,R are concyclic [21] ⇒ ∠ABC = ∠ARC [25]
010. A,B,C,R are concyclic [21] ⇒ ∠ABR = ∠ACR [26]
011. K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & L,A,C are collinear [05] & B,K,C are collinear [07] & ∠ABC = ∠ARC [25] & ∠BAR = ∠RBA [03] & ∠ABR = ∠ACR [26] ⇒ ∠QCL = ∠KCP [27]
012. ∠QLC = ∠CKP [20] & ∠QCL = ∠KCP [27] (Similar Triangles)⇒ PK:LQ = PC:QC [28]
013. K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & L_1L ⟂ CR [14] & CR ⟂ K_1K [16] ⇒ ∠KK_1P = ∠QL_1L [29]
014. A,L,C are collinear [05] & LC = LA [06] ⇒ L is midpoint of CA [30]
015. O is the circumcenter of \Delta RCA [22] & L is midpoint of CA [30] ⇒ ∠ARC = ∠AOL [31]
016. OA = OB [01] & RA = RB [04] (SSS)⇒ ∠RAO = ∠OBR [32]
017. B,K,C are collinear [07] & KC = KB [08] ⇒ K is midpoint of CB [33]
018. O is the circumcenter of \Delta RCB [23] & K is midpoint of CB [33] ⇒ ∠BRC = ∠BOK [34]
019. P,K,O are collinear [09] & K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & L,Q,O are collinear [11] & ∠ARC = ∠AOL [31] & ∠RAO = ∠OBR [32] & ∠BRC = ∠BOK [34] ⇒ ∠KPK_1 = ∠L_1QL [35]
020. ∠KK_1P = ∠QL_1L [29] & ∠KPK_1 = ∠L_1QL [35] (Similar Triangles)⇒ K_1K:LL_1 = PK:LQ [36]
021. OR = OC [24] ⇒ ∠ORC = ∠RCO [37]
022. K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & ∠ORC = ∠RCO [37] ⇒ ∠ORQ = ∠PCO [38]
023. L,Q,O are collinear [11] & K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & P,K,O are collinear [09] & ∠ARC = ∠AOL [31] & ∠RAO = ∠OBR [32] & ∠BRC = ∠BOK [34] ⇒ ∠OQR = ∠CPO [39]
024. ∠ORQ = ∠PCO [38] & ∠OQR = ∠CPO [39] (Similar Triangles)⇒ RO:CO = RQ:CP [40]
025. K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & ∠ORC = ∠RCO [37] ⇒ ∠ORP = ∠QCO [41]
026. P,K,O are collinear [09] & K_1,C,R are collinear [15] & L_1,C,R are collinear [13] & P,C,R are collinear [10] & Q,C,R are collinear [12] & L,Q,O are collinear [11] & ∠ARC = ∠AOL [31] & ∠RAO = ∠OBR [32] & ∠BRC = ∠BOK [34] ⇒ ∠OPR = ∠CQO [42]
027. ∠ORP = ∠QCO [41] & ∠OPR = ∠CQO [42] (Similar Triangles)⇒ RO:CO = RP:CQ [43]
028. PK:LQ = PC:QC [28] & K_1K:LL_1 = PK:LQ [36] & RO:CO = RQ:CP [40] & OR = OC [24] & RO:CO = RP:CQ [43] ⇒ KK_1:LL_1 = RQ:RP
==========================
IMO 2008, Problem 1. Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered at the midpoint of BC and passing through H intersects the sideline BC at points A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six points A1, A2, B1, B2, C1, C2 are concyclic.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. (∵ 더 어려운 문제) (ref)
IMO 2008, Problem 6. Let ABCD be a convex quadrilateral with BA ≠ BC. Denote the incircles of triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω1 and ω2 intersect on ω.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry로 풀리지 않았습니다. (ref)
IMO 2009, Problem 2. Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the sides CA and AB respectively. Let K, L, M be the midpoints of BP, CQ, PQ, respectively, and let Γ be the circumcircle of △KLM. Suppose that PQ is tangent to Γ. Prove that OP = OQ.
○ 풀이. Evan Chen의 풀이
○ 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. (∵ 더 어려운 문제) (ref)
입력: 2024.05.05 19:16
'▶ 자연과학 > ▷ 기하학' 카테고리의 다른 글
【국제수학올림피아드】 IMO 기하 문제 풀이 (2015년 ~ 2019년) (0) | 2024.05.05 |
---|---|
【국제수학올림피아드】 IMO 기하 문제 풀이 (2010년 ~ 2014년) (2) | 2024.05.05 |
【국제수학올림피아드】 IMO 기하 문제 풀이 (2000년 ~ 2004년) (0) | 2024.05.05 |
【기하학】 기하 기초 문제 (01~20) (0) | 2022.05.20 |
【기하학】 축구공과 오일러 법칙 (0) | 2019.11.05 |
최근댓글