본문 바로가기

Contact English

【국제수학올림피아드】 IMO 기하 문제 풀이 (2010년 ~ 2014년)

 

IMO 기하 문제 풀이 (2010년 ~ 2014년)

 

추천글 : 【기하학】 IMO 기하 문제 풀이 종합 


 

IMO 2010, Problem 2. Let I be the incenter of a triangle ABC and let Γ be its circumcircle. Let line AI intersect Γ again at D. Let E be a point on arc BDC and F a point on side BC such that

 

BAF = ∠CAE < 1/2 ∠BAC.

 

Finally, let G be the midpoint of IF. Prove that DG and EI intersect on Γ.

 

풀이. Evan Chen의 풀이 

 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. ( 더 어려운 문제) (ref

 

==========================
 * From theorem premises:
A B C D E F G H I J : Points
DA = DB [00]
DB = DC [01]
∠ACE = ∠ECB [02]
∠BAE = ∠EAC [03]
DF = DA [04]
F,E,A are collinear [05]
C,B,G are collinear [06]
DH = DA [07]
∠CAH = ∠GAB [08]
I,G,E are collinear [09]
IE = IG [10]
I,F,J are collinear [11]
J,H,E are collinear [12]

 * Auxiliary Constructions:
K L M : Points
B,K,E are collinear [13]
KE = KB [14]
DL = DF [15]
F,L,D are collinear [16]
M,E,A are collinear [17]
ME = MA [18]

 * Proof steps:
001. DA = DB [00] & DF = DA [04] & DB = DC [01] ⇒  C,B,F,A are concyclic [19]
002. DA = DB [00] & DH = DA [07] & DF = DA [04] & C,B,F,A are concyclic [19] ⇒  C,B,H,A are concyclic [20]
003. M,E,A are collinear [17] & ME = MA [18] ⇒  M is midpoint of EA [21]
004. I,G,E are collinear [09] & IE = IG [10] ⇒  I is midpoint of EG [22]
005. M is midpoint of EA [21] & I is midpoint of EG [22] ⇒  MI ∥ AG [23]
006. B,K,E are collinear [13] & KE = KB [14] ⇒  K is midpoint of EB [24]
007. M is midpoint of EA [21] & K is midpoint of EB [24] ⇒  MK ∥ AB [25]
008. ∠CAH = ∠GAB [08] & AG ∥ IM [23] & AB ∥ KM [25] ⇒  ∠CAH = ∠IMK [26]
009. C,B,H,A are concyclic [20] ⇒  ∠CBA = ∠CHA [27]
010. I is midpoint of EG [22] & K is midpoint of EB [24] ⇒  IK ∥ GB [28]
011. ∠CBA = ∠CHA [27] & IK ∥ GB [28] & C,B,G are collinear [06] & AB ∥ KM [25] ⇒  ∠IKM = ∠CHA [29]
012. ∠CAH = ∠IMK [26] & ∠IKM = ∠CHA [29] (Similar Triangles)⇒  IM:KM = CA:HA [30]
013. F,E,A are collinear [05] & ∠BAE = ∠EAC [03] ⇒  ∠BAF = ∠FAC [31]
014. C,B,F,A are concyclic [19] & ∠BAF = ∠FAC [31] ⇒  BF = FC [32]
015. C,B,F,A are concyclic [19] ⇒  ∠BCF = ∠BAF [33]
016. ∠BCF = ∠BAF [33] & F,E,A are collinear [05] ⇒  ∠BCF = ∠BAE [34]
017. ∠BAE = ∠EAC [03] & ∠ACE = ∠ECB [02] & ∠BCF = ∠BAE [34] (Angle chase)⇒  ∠CEA = ∠FCE [35]
018. F,E,A are collinear [05] & ∠FCE = ∠CEA [35] ⇒  ∠FCE = ∠CEF [36]
019. ∠FCE = ∠CEF [36] ⇒  FC = FE [37]
020. BF = FC [32] & FC = FE [37] ⇒  F is the circumcenter of \Delta CBE [38]
021. F is the circumcenter of \Delta CBE [38] & K is midpoint of EB [24] ⇒  ∠ECB = ∠EFK [39]
022. M,E,A are collinear [17] & F,E,A are collinear [05] & ∠ACE = ∠ECB [02] & ∠ECB = ∠EFK [39] ⇒  ∠MFK = ∠ACE [40]
023. M,E,A are collinear [17] & F,E,A are collinear [05] & ∠BAE = ∠EAC [03] & AB ∥ KM [25] ⇒  ∠KMF = ∠EAC [41]
024. ∠MFK = ∠ACE [40] & ∠KMF = ∠EAC [41] (Similar Triangles)⇒  KF:KM = CE:EA [42]
025. ∠MFK = ∠ACE [40] & ∠KMF = ∠EAC [41] (Similar Triangles)⇒  KF:FM = CE:CA [43]
026. IM:KM = CA:HA [30] & KF:KM = CE:EA [42] & KF:FM = CE:CA [43] (Ratio chase)⇒  EA:HA = IM:FM [44]
027. ∠BAE = ∠EAC [03] & ∠HAC = ∠BAG [08] (Angle chase)⇒  ∠GAE = ∠EAH [45]
028. M,E,A are collinear [17] & F,E,A are collinear [05] & ∠EAH = ∠GAE [45] & AG ∥ IM [23] ⇒  ∠EAH = ∠IMF [46]
029. EA:HA = IM:FM [44] & ∠EAH = ∠IMF [46] (Similar Triangles)⇒  ∠EHA = ∠IFM [47]
030. DA = DB [00] & DH = DA [07] & DF = DA [04] & C,B,H,A are concyclic [20] & C,B,F,A are concyclic [19] ⇒  C,H,F,A are concyclic [48]
031. C,H,F,A are concyclic [48] ⇒  ∠CHA = ∠CFA [49]
032. J,H,E are collinear [12] & J,F,I are collinear [11] & ∠EHA = ∠IFM [47] & M,E,A are collinear [17] & F,E,A are collinear [05] & ∠CHA = ∠CFA [49] ⇒  ∠HCF = ∠HJF [50]
033. ∠HCF = ∠HJF [50] ⇒  C,F,H,J are concyclic [51]
034. DA = DB [00] & DF = DA [04] & DL = DF [15] & DH = DA [07] & C,B,H,A are concyclic [20] & C,B,F,A are concyclic [19] & C,F,H,J are concyclic [51] & C,H,F,A are concyclic [48] ⇒  J,H,F,L are concyclic [52]
035. J,H,F,L are concyclic [52] ⇒  ∠JFH = ∠JLH [53]
036. DA = DB [00] & DF = DA [04] & DL = DF [15] ⇒  D is the circumcenter of \Delta FBL [54]
037. D is the circumcenter of \Delta FBL [54] & F,L,D are collinear [16] ⇒  BF ⟂ BL [55]
038. DH = DA [07] & DF = DA [04] & DL = DF [15] ⇒  D is the circumcenter of \Delta FHL [56]
039. D is the circumcenter of \Delta FHL [56] & F,L,D are collinear [16] ⇒  FH ⟂ HL [57]
040. BF ⟂ BL [55] & FH ⟂ HL [57] ⇒  ∠FBL = ∠LHF [58]
041. C,F,H,J are concyclic [51] & C,H,F,A are concyclic [48] & C,B,H,A are concyclic [20] & C,B,F,A are concyclic [19] & DA = DB [00] & DF = DA [04] & DL = DF [15] & DH = DA [07] ⇒  B,J,F,L are concyclic [59]
042. B,J,F,L are concyclic [59] ⇒  ∠BFJ = ∠BLJ [60]
043. J,F,I are collinear [11] & ∠JFH = ∠JLH [53] & ∠FBL = ∠LHF [58] & ∠BFJ = ∠BLJ [60] ⇒  FJ ⟂ JL [61]
044. F,L,D are collinear [16] & DL = DF [15] ⇒  D is midpoint of FL [62]
045. FJ ⟂ JL [61] & D is midpoint of FL [62] ⇒  FD = JD [63]
046. FD = JD [63] & DF = DA [04] ⇒  DA = DJ
==========================

 

 

IMO 2010, Problem 4. Let P be a point interior to triangle ABC (with CA ≠ CB). The lines AP, BP and CP meet again its circumcircle Γ at K, L, M, respectively. The tangent line at C to Γ meets the line AB at S. Show that from SC = SP follows MK = ML.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)

 

==========================
 * From theorem premises:
S C P O A B M L K : Points
SC = SP [00]
∠PCS = ∠SPC [01]
CO ⟂ CS [02]
OA = OC [03]
OB = OC [04]
S,B,A are collinear [05]
OM = OC [06]
P,M,C are collinear [07]
OL = OC [08]
P,L,B are collinear [09]
OK = OC [10]
P,K,A are collinear [11]

 * Auxiliary Constructions:
: Points


 * Proof steps:
001. OA = OC [03] & OM = OC [06] & OB = OC [04] & OL = OC [08] ⇒  M,L,B,A are concyclic [12]
002. OB = OC [04] & OK = OC [10] & OM = OC [06] & OA = OC [03] & OL = OC [08] & M,L,B,A are concyclic [12] ⇒  L,K,A,M are concyclic [13]
003. OB = OC [04] & OK = OC [10] & OM = OC [06] & OA = OC [03] & OL = OC [08] & M,L,B,A are concyclic [12] ⇒  L,K,C,M are concyclic [14]
004. OB = OC [04] & OA = OC [03] ⇒  O is the circumcenter of \Delta CBA [15]
005. O is the circumcenter of \Delta CBA [15] & CO ⟂ CS [02] ⇒  ∠SCA = ∠CBA [16]
006. A,S,B are collinear [05] & ∠CBA = ∠SCA [16] ⇒  ∠CBS = ∠SCA [17]
007. S,A,B are collinear [05] ⇒  ∠ASC = ∠BSC [18]
008. S,A,B are collinear [05] ⇒  ∠PSB = ∠PSA [19]
009. ∠CBS = ∠SCA [17] & ∠ASC = ∠BSC [18] (Similar Triangles)⇒  SA:SC = SC:SB [20]
010. SA:SC = SC:SB [20] & SC = SP [00] ⇒  SA:PS = PS:SB [21]
011. SA:PS = PS:SB [21] & ∠PSB = ∠PSA [19] (Similar Triangles)⇒  ∠SPB = ∠PAS [22]
012. L,A,M,B are concyclic [12] ⇒  ∠AML = ∠ABL [23]
013. P,K,A are collinear [11] & ∠SPB = ∠PAS [22] & P,L,B are collinear [09] & S,B,A are collinear [05] & ∠AML = ∠ABL [23] ⇒  ∠AML = ∠KPS [24]
014. OM = OC [06] & OL = OC [08] ⇒  O is the circumcenter of \Delta CML [25]
015. O is the circumcenter of \Delta CML [25] & CO ⟂ CS [02] ⇒  ∠SCM = ∠CLM [26]
016. P,M,C are collinear [07] & ∠PCS = ∠SPC [01] & ∠SCM = ∠CLM [26] ⇒  ∠MLC = ∠SPM [27]
017. L,K,C,M are concyclic [14] ⇒  ∠CLK = ∠CMK [28]
018. P,M,C are collinear [07] & ∠CLK = ∠CMK [28] ⇒  ∠CLK = ∠PMK [29]
019. ∠MLC = ∠SPM [27] & ∠CLK = ∠PMK [29] ⇒  ∠MLK = ∠(PS-KM) [30]
020. ∠AML = ∠KPS [24] & ∠MLK = ∠(PS-KM) [30] ⇒  ∠(MA-LK) = ∠PKM [31]
021. ∠(MA-LK) = ∠PKM [31] & P,K,A are collinear [11] ⇒  ∠MAK = ∠LKM [32]
022. L,K,A,M are concyclic [13] & ∠MAK = ∠LKM [32] ⇒  LM = MK
==========================

 

 

IMO 2011, Problem 6. Let ABC be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓa, ℓb, ℓc be the lines obtained by reflecting ℓ in the lines BC, CA, and AB, respectively. Show that the circumcircle of the triangle determined by the lines ℓa, ℓb, and ℓc is tangent to the circle Γ.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry로 풀리지 않았습니다. (ref)

 

 

IMO 2012, Problem 1. Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC. Prove that M is the midpoint of ST.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)

 

==========================
 * From theorem premises:
A B C J M L K F G S T : Points
∠ACJ = ∠JCB [00]
∠JAB = ∠CAJ [01]
B,C,M are collinear [02]
JM ⟂ BC [03]
L,C,A are collinear [04]
JL ⟂ AC [05]
B,K,A are collinear [06]
JK ⟂ AB [07]
J,B,F are collinear [08]
L,F,M are collinear [09]
G,K,M are collinear [10]
J,G,C are collinear [11]
F,S,A are collinear [12]
B,C,S are collinear [13]
T,G,A are collinear [14]
T,B,C are collinear [15]

 * Auxiliary Constructions:
: Points


 * Proof steps:
001. B,K,A are collinear [06] & B,C,M are collinear [02] & JM ⟂ BC [03] & JK ⟂ AB [07] ⇒  ∠BKJ = ∠BMJ [16]
002. ∠BKJ = ∠BMJ [16] ⇒  J,B,K,M are concyclic [17]
003. J,B,K,M are concyclic [17] ⇒  ∠JBM = ∠JKM [18]
004. J,B,K,M are concyclic [17] ⇒  ∠JBK = ∠JMK [19]
005. B,C,M are collinear [02] & L,C,A are collinear [04] & JL ⟂ AC [05] & JM ⟂ BC [03] ⇒  ∠JMC = ∠CLJ [20]
006. J,G,C are collinear [11] & B,C,M are collinear [02] & L,C,A are collinear [04] & ∠JCB = ∠ACJ [00] ⇒  ∠JCM = ∠LCJ [21]
007. ∠JMC = ∠CLJ [20] & ∠JCM = ∠LCJ [21] (Similar Triangles)⇒  JM = JL [22]
008. ∠JMC = ∠CLJ [20] & ∠JCM = ∠LCJ [21] (Similar Triangles)⇒  CM = CL [23]
009. ∠JMC = ∠CLJ [20] & ∠JCM = ∠LCJ [21] (Similar Triangles)⇒  ∠MJC = ∠CJL [24]
010. B,K,A are collinear [06] & L,C,A are collinear [04] & JL ⟂ AC [05] & JK ⟂ AB [07] ⇒  ∠JKA = ∠ALJ [25]
011. B,K,A are collinear [06] & L,C,A are collinear [04] & ∠JAB = ∠CAJ [01] ⇒  ∠JAK = ∠LAJ [26]
012. ∠JKA = ∠ALJ [25] & ∠JAK = ∠LAJ [26] (Similar Triangles)⇒  JK = JL [27]
013. JM = JL [22] & JK = JL [27] ⇒  J is the circumcenter of \Delta LMK [28]
014. JM = JL [22] & JK = JL [27] ⇒  JM = JK [29]
015. B,C,M are collinear [02] & JM ⟂ BC [03] ⇒  JM ⟂ MB [30]
016. J is the circumcenter of \Delta LMK [28] & JM ⟂ MB [30] ⇒  ∠BML = ∠MKL [31]
017. J,B,F are collinear [08] & ∠JBM = ∠JKM [18] & B,C,M are collinear [02] & G,K,M are collinear [10] & ∠BML = ∠MKL [31] & L,F,M are collinear [09] ⇒  ∠KLF = ∠KJF [32]
018. ∠KLF = ∠KJF [32] ⇒  J,L,K,F are concyclic [33]
019. L,C,A are collinear [04] & B,K,A are collinear [06] & JL ⟂ AC [05] & JK ⟂ AB [07] ⇒  ∠ALJ = ∠AKJ [34]
020. ∠ALJ = ∠AKJ [34] ⇒  J,L,K,A are concyclic [35]
021. L,C,A are collinear [04] & B,C,M are collinear [02] & JL ⟂ AC [05] & JM ⟂ BC [03] ⇒  ∠CLJ = ∠CMJ [36]
022. ∠CLJ = ∠CMJ [36] ⇒  J,L,C,M are concyclic [37]
023. J,L,C,M are concyclic [37] ⇒  ∠JLM = ∠JCM [38]
024. J,L,C,M are concyclic [37] ⇒  ∠JCL = ∠JML [39]
025. J,G,C are collinear [11] & ∠JLM = ∠JCM [38] & L,F,M are collinear [09] & B,C,M are collinear [02] & ∠BML = ∠MKL [31] & G,K,M are collinear [10] ⇒  ∠GKL = ∠GJL [40]
026. ∠GKL = ∠GJL [40] ⇒  J,G,L,K are concyclic [41]
027. J,L,K,F are concyclic [33] & J,L,K,A are concyclic [35] & J,L,K,G are concyclic [41] ⇒  K,A,J,L,G,F are concyclic [42]
028. J,L,K,F are concyclic [33] & J,L,K,A are concyclic [35] & J,L,K,G are concyclic [41] ⇒  K,A,G,F are concyclic [43]
029. K,A,G,F are concyclic [43] ⇒  ∠KGA = ∠KFA [44]
030. G,K,M are collinear [10] & T,G,A are collinear [14] & ∠KGA = ∠KFA [44] ⇒  ∠MGT = ∠KFA [45]
031. JM = JL [22] & CM = CL [23] ⇒  LM ⟂ JC [46]
032. J,G,C are collinear [11] & LM ⟂ JC [46] & L,F,M are collinear [09] ⇒  JG ⟂ LF [47]
033. B,K,A are collinear [06] & JK ⟂ AB [07] ⇒  JK ⟂ BK [48]
034. JG ⟂ LF [47] & JK ⟂ BK [48] ⇒  ∠GJK = ∠(LF-BK) [49]
035. J,G,C are collinear [11] & B,K,A are collinear [06] & ∠GJK = ∠(LF-BK) [49] ⇒  ∠(LF-JG) = ∠BKJ [50]
036. J is the circumcenter of \Delta LMK [28] & JK ⟂ BK [48] ⇒  ∠BKL = ∠KML [51]
037. J,B,F are collinear [08] & ∠JBM = ∠JKM [18] & B,C,M are collinear [02] & G,K,M are collinear [10] & ∠BML = ∠MKL [31] & L,F,M are collinear [09] & ∠BKL = ∠KML [51] & B,K,A are collinear [06] & ∠JBK = ∠JMK [19] ⇒  ∠MJF = ∠FJK [52]
038. JM = JK [29] & ∠MJF = ∠FJK [52] (SAS)⇒  ∠JMF = ∠FKJ [53]
039. J,G,C are collinear [11] & ∠JMF = ∠FKJ [53] & L,F,M are collinear [09] & ∠JCL = ∠JML [39] & L,C,A are collinear [04] & ∠ACJ = ∠JCB [00] ⇒  ∠(JG-BC) = ∠JKF [54]
040. ∠(LF-JG) = ∠BKJ [50] & ∠(JG-BC) = ∠JKF [54] ⇒  ∠(LF-BC) = ∠BKF [55]
041. J,G,L,K are concyclic [41] & J,L,K,A are concyclic [35] ⇒  J,G,K,A are concyclic [56]
042. J,G,K,A are concyclic [56] & J,L,K,A are concyclic [35] ⇒  J,G,L,A are concyclic [57]
043. A,J,L,G are concyclic [57] ⇒  ∠ALJ = ∠AGJ [58]
044. J,G,K,A are concyclic [56] ⇒  ∠KAG = ∠KJG [59]
045. T,B,C are collinear [15] & B,C,M are collinear [02] & T,G,A are collinear [14] & B,K,A are collinear [06] & ∠(LF-BC) = ∠BKF [55] & JC ⟂ LM [46] & ∠ALJ = ∠AGJ [58] & L,C,A are collinear [04] & J,G,C are collinear [11] & JL ⟂ AC [05] & JK ⟂ AB [07] & ∠KAG = ∠KJG [59] & L,F,M are collinear [09] ⇒  ∠MTG = ∠FKA [60]
046. ∠MGT = ∠KFA [45] & ∠MTG = ∠FKA [60] (Similar Triangles)⇒  MG:AF = MT:AK [61]
047. J,L,K,A are concyclic [35] ⇒  ∠JKL = ∠JAL [62]
048. B,K,A are collinear [06] & ∠JKL = ∠JAL [62] & L,C,A are collinear [04] & ∠BAJ = ∠JAC [01] ⇒  ∠(BK-JA) = ∠JKL [63]
049. JM = JK [29] ⇒  ∠JMK = ∠MKJ [64]
050. B,K,A are collinear [06] & J,B,F are collinear [08] & ∠JMK = ∠MKJ [64] & G,K,M are collinear [10] & ∠JBK = ∠JMK [19] ⇒  ∠KBJ = ∠JKG [65]
051. ∠(BK-JA) = ∠JKL [63] & ∠KBJ = ∠JKG [65] ⇒  ∠LKG = ∠AJB [66]
052. J,B,F are collinear [08] & ∠LKG = ∠AJB [66] ⇒  ∠AJF = ∠LKG [67]
053. K,A,J,L,G,F are concyclic [42] & ∠AJF = ∠LKG [67] ⇒  AF = LG [68]
054. J,G,C are collinear [11] & ∠MJC = ∠CJL [24] ⇒  ∠LJG = ∠GJM [69]
055. JM = JL [22] & ∠LJG = ∠GJM [69] (SAS)⇒  GL = GM [70]
056. J,B,F are collinear [08] & ∠JBM = ∠JKM [18] & B,C,M are collinear [02] & G,K,M are collinear [10] & ∠BML = ∠MKL [31] & L,F,M are collinear [09] & ∠BKL = ∠KML [51] & B,K,A are collinear [06] & ∠JBK = ∠JMK [19] ⇒  ∠BJK = ∠MJB [71]
057. J,B,K,M are concyclic [17] & ∠BJK = ∠MJB [71] ⇒  BK = MB [72]
058. JM = JK [29] & BK = MB [72] ⇒  JB ⟂ MK [73]
059. J,L,K,F are concyclic [33] & J,L,K,A are concyclic [35] ⇒  J,K,F,A are concyclic [74]
060. J,L,K,F are concyclic [33] & J,L,K,A are concyclic [35] ⇒  A,J,L,F are concyclic [75]
061. A,J,L,F are concyclic [75] ⇒  ∠ALJ = ∠AFJ [76]
062. J,K,F,A are concyclic [74] ⇒  ∠KAF = ∠KJF [77]
063. F,S,A are collinear [12] & G,K,M are collinear [10] & JB ⟂ MK [73] & ∠ALJ = ∠AFJ [76] & L,C,A are collinear [04] & J,B,F are collinear [08] & JL ⟂ AC [05] & JK ⟂ AB [07] & ∠KAF = ∠KJF [77] & B,K,A are collinear [06] ⇒  SA ∥ MK [78]
064. B,C,S are collinear [13] & B,C,M are collinear [02] ⇒  B,S,M are collinear [79]
065. SA ∥ MK [78] & B,S,M are collinear [79] & B,K,A are collinear [06] ⇒  MB:KB = MS:KA [80]
066. MG:AF = MT:AK [61] & AF = LG [68] & GL = GM [70] & MB:KB = MS:KA [80] & BK = MB [72] ⇒  MS = MT
==========================

 

 

IMO 2012, Problem 5. Let ABC be a triangle with ∠BCA = 90°, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment CD. Let K be the point on the segment AX such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC. Let M = ALBK. Prove that MK = ML.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. ( 더 어려운 문제) (ref)

 

 

IMO 2013, Problem 3. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC at the point A1. Define the points B1 on CA and C1 on AB analogously, using the excircles opposite B and C, respectively. Suppose that the circumcenter of triangle A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC is right-angled.

 

풀이. Evan Chen의 풀이 

 풀이. AlphaGeometry 풀이 대상은 아니었습니다.

 

 

IMO 2013, Problem 4. Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC, between B and C. The points M and N are the feet of the altitudes drawn from B and C, respectively. Suppose ω1 is the circumcircle of triangle BWN and X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of triangle CWM and Y is a point such that WY is a diameter of ω2. Show that the points X, Y , and H are collinear.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)

 

==========================
 * From theorem premises:
A B C H M N W O1 O2 X Y : Points
BH ⟂ AC [00]
AH ⟂ BC [01]
B,H,M are collinear [02]
C,A,M are collinear [03]
N,C,H are collinear [04]
B,A,N are collinear [05]
B,C,W are collinear [06]
O_1N = O_1W [07]
O_1B = O_1N [08]
O_2M = O_2W [09]
O_2C = O_2M [10]
O_1X = O_1W [11]
W,X,O_1 are collinear [12]
O_2Y = O_2W [13]
O_2,Y,W are collinear [14]

 * Auxiliary Constructions:
: Points


 * Proof steps:
001. O_1N = O_1W [07] & O_1X = O_1W [11] ⇒  O_1 is the circumcenter of \Delta XNW [15]
002. O_1 is the circumcenter of \Delta XNW [15] & W,X,O_1 are collinear [12] ⇒  NX ⟂ NW [16]
003. NX ⟂ NW [16] & BH ⟂ AC [00] ⇒  ∠XNW = ∠(AC-BH) [17]
004. B,H,M are collinear [02] & C,A,M are collinear [03] & BH ⟂ AC [00] ⇒  ∠BMC = ∠AMH [18]
005. B,H,M are collinear [02] & C,A,M are collinear [03] & BH ⟂ AC [00] ⇒  ∠BMA = ∠CMH [19]
006. AH ⟂ BC [01] & BH ⟂ AC [00] ⇒  ∠HAC = ∠CBH [20]
007. B,H,M are collinear [02] & C,A,M are collinear [03] & ∠CBH = ∠HAC [20] ⇒  ∠CBM = ∠HAM [21]
008. ∠BMC = ∠AMH [18] & ∠CBM = ∠HAM [21] (Similar Triangles)⇒  CM:HM = BM:AM [22]
009. CM:HM = BM:AM [22] & ∠BMA = ∠CMH [19] (Similar Triangles)⇒  ∠MBA = ∠MCH [23]
010. CM:HM = BM:AM [22] & ∠BMA = ∠CMH [19] (Similar Triangles)⇒  ∠BAM = ∠CHM [24]
011. N,C,H are collinear [04] & N,B,A are collinear [05] & ∠XNW = ∠(AC-BH) [17] & ∠MBA = ∠MCH [23] & B,H,M are collinear [02] & C,A,M are collinear [03] ⇒  ∠HNA = ∠XNW [25]
012. O_1B = O_1N [08] & O_1N = O_1W [07] & O_1X = O_1W [11] ⇒  B,X,W,N are concyclic [26]
013. O_1B = O_1N [08] & O_1N = O_1W [07] & O_1X = O_1W [11] ⇒  O_1 is the circumcenter of \Delta XBW [27]
014. B,X,W,N are concyclic [26] ⇒  ∠BXW = ∠BNW [28]
015. B,X,W,N are concyclic [26] ⇒  ∠BXN = ∠BWN [29]
016. O_1 is the circumcenter of \Delta XBW [27] & W,X,O_1 are collinear [12] ⇒  BW ⟂ XB [30]
017. N,B,A are collinear [05] & W,X,O_1 are collinear [12] & ∠BXW = ∠BNW [28] & BW ⟂ XB [30] & AH ⟂ BC [01] & B,C,W are collinear [06] ⇒  ∠HAN = ∠XWN [31]
018. ∠HNA = ∠XNW [25] & ∠HAN = ∠XWN [31] (Similar Triangles)⇒  NH:NX = NA:NW [32]
019. N,C,H are collinear [04] & ∠BAM = ∠CHM [24] & C,A,M are collinear [03] & B,H,M are collinear [02] & ∠MBA = ∠MCH [23] ⇒  BA ⟂ NC [33]
020. NX ⟂ NW [16] & BA ⟂ NC [33] ⇒  ∠XNC = ∠(NW-BA) [34]
021. N,C,H are collinear [04] & N,B,A are collinear [05] & ∠XNC = ∠(NW-BA) [34] ⇒  ∠HNX = ∠ANW [35]
022. NH:NX = NA:NW [32] & ∠HNX = ∠ANW [35] (Similar Triangles)⇒  ∠(HX-AW) = ∠XNW [36]
023. O_2M = O_2W [09] & O_2Y = O_2W [13] ⇒  O_2 is the circumcenter of \Delta YMW [37]
024. O_2 is the circumcenter of \Delta YMW [37] & O_2,Y,W are collinear [14] ⇒  MY ⟂ MW [38]
025. BH ⟂ AC [00] & MY ⟂ MW [38] ⇒  ∠(MW-AC) = ∠(MY-BH) [39]
026. BH ⟂ AC [00] & MY ⟂ MW [38] ⇒  ∠YMW = ∠(AC-BH) [40]
027. B,H,M are collinear [02] & C,A,M are collinear [03] & BH ⟂ AC [00] & MY ⟂ MW [38] ⇒  ∠YMW = ∠HMA [41]
028. O_2C = O_2M [10] & O_2M = O_2W [09] & O_2Y = O_2W [13] ⇒  W,Y,C,M are concyclic [42]
029. O_2C = O_2M [10] & O_2M = O_2W [09] & O_2Y = O_2W [13] ⇒  O_2 is the circumcenter of \Delta YCW [43]
030. W,Y,C,M are concyclic [42] ⇒  ∠WYC = ∠WMC [44]
031. O_2 is the circumcenter of \Delta YCW [43] & O_2,Y,W are collinear [14] ⇒  CW ⟂ YC [45]
032. W,O_2,Y are collinear [14] & C,A,M are collinear [03] & ∠WYC = ∠WMC [44] & CW ⟂ YC [45] & ∠BXN = ∠BWN [29] & B,C,W are collinear [06] & NX ⟂ NW [16] & BW ⟂ XB [30] & AH ⟂ BC [01] ⇒  ∠YWM = ∠HAM [46]
033. ∠YMW = ∠HMA [41] & ∠YWM = ∠HAM [46] (Similar Triangles)⇒  YM:HM = WM:AM [47]
034. C,A,M are collinear [03] & B,H,M are collinear [02] & ∠(MW-AC) = ∠(MY-BH) [39] ⇒  ∠WMA = ∠YMH [48]
035. YM:HM = WM:AM [47] & ∠WMA = ∠YMH [48] (Similar Triangles)⇒  ∠WAM = ∠YHM [49]
036. YM:HM = WM:AM [47] & ∠WMA = ∠YMH [48] (Similar Triangles)⇒  ∠YMW = ∠(HY-AW) [50]
037. ∠WAM = ∠YHM [49] & C,A,M are collinear [03] & B,H,M are collinear [02] & ∠YMW = ∠(AC-BH) [40] & ∠YMW = ∠(HY-AW) [50] ⇒  YH ⟂ WA [51]
038. YH ⟂ WA [51] & NX ⟂ NW [16] ⇒  ∠(HY-AW) = ∠XNW [52]
039. ∠(HX-AW) = ∠XNW [36] & ∠(HY-AW) = ∠XNW [52] ⇒  ∠(YH-WA) = ∠(XH-WA) [53]
040. ∠(YH-WA) = ∠(XH-WA) [53] ⇒  YH ∥ XH [54]
041. HY ∥ HX [54] ⇒  Y,X,H are collinear
==========================

 

 

IMO 2014, Problem 3. Convex quadrilateral ABCD has ∠ABC = ∠CDA = 90°. Point H is the foot of the perpendicular from A to BD. Points S and T lie on sides AB and AD, respectively, such that H lies inside triangle SCT and

 

CHS − ∠CSB = 90°, ∠THC − ∠DTC = 90°.

 

Prove that line BD is tangent to the circumcircle of triangle TSH.

 

풀이. Evan Chen의 풀이 

 풀이. AlphaGeometry 풀이 대상은 아니었습니다.

 

 

IMO 2014, Problem 4. Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be points on AP and AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN. Prove that BM and CN meet on the circumcircle of △ABC.

 

풀이. Evan Chen의 풀이 

 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. ( 더 어려운 문제) (ref)

 

==========================
 * From theorem premises:
A B C D E F G H I : Points
D,C,B are collinear [00]
∠DAB = ∠BCA [01]
∠(AD-BC) = ∠BAC [02]
C,B,E are collinear [03]
∠EAC = ∠CBA [04]
∠(BC-AE) = ∠BAC [05]
F,D,A are collinear [06]
DA = DF [07]
EA = EG [08]
G,E,A are collinear [09]
F,H,B are collinear [10]
H,G,C are collinear [11]
IA = IB [12]
IB = IC [13]

 * Auxiliary Constructions:
J : Points
IJ = IA [14]
I,J,A are collinear [15]

 * Proof steps:
001. IA = IB [12] & IJ = IA [14] & IB = IC [13] ⇒  J,C,B,A are concyclic [16]
002. IA = IB [12] & IJ = IA [14] & IB = IC [13] ⇒  I is the circumcenter of \Delta JCA [17]
003. J,C,B,A are concyclic [16] ⇒  ∠JCA = ∠JBA [18]
004. D,C,B are collinear [00] & F,D,A are collinear [06] & ∠BCA = ∠DAB [01] ⇒  ∠DCA = ∠(FD-BA) [19]
005. ∠JCA = ∠JBA [18] & ∠DCA = ∠(FD-BA) [19] ⇒  ∠(JB-FD) = ∠JCD [20]
006. C,B,E are collinear [03] & ∠BCA = ∠DAB [01] ⇒  ∠ECA = ∠DAB [21]
007. D,C,B are collinear [00] & ∠EAC = ∠CBA [04] ⇒  ∠EAC = ∠DBA [22]
008. ∠ECA = ∠DAB [21] & ∠EAC = ∠DBA [22] (Similar Triangles)⇒  EC:EA = DA:DB [23]
009. E,C,B are collinear [03] & D,C,B are collinear [00] & ∠(BC-AE) = ∠BAC [05] & ∠(AD-BC) = ∠BAC [02] ⇒  ∠ADE = ∠DEA [24]
010. ∠ADE = ∠DEA [24] ⇒  AD = AE [25]
011. EC:EA = DA:DB [23] & DA = DF [07] & AD = AE [25] & EA = EG [08] ⇒  EC:EG = DF:DB [26]
012. E,C,B are collinear [03] & G,E,A are collinear [09] & F,D,A are collinear [06] & D,C,B are collinear [00] & ∠(BC-AE) = ∠BAC [05] & ∠(AD-BC) = ∠BAC [02] ⇒  ∠CEG = ∠FDB [27]
013. EC:EG = DF:DB [26] & ∠CEG = ∠FDB [27] (Similar Triangles)⇒  ∠ECG = ∠DFB [28]
014. F,H,B are collinear [10] & H,G,C are collinear [11] & ∠(JB-FD) = ∠JCD [20] & F,D,A are collinear [06] & D,C,B are collinear [00] & ∠ECG = ∠DFB [28] & C,B,E are collinear [03] ⇒  ∠BHC = ∠BJC [29]
015. ∠BHC = ∠BJC [29] ⇒  H,C,B,J are concyclic [30]
016. H,C,B,J are concyclic [30] & J,C,B,A are concyclic [16] ⇒  J,H,A,B are concyclic [31]
017. H,C,B,J are concyclic [30] & J,C,B,A are concyclic [16] ⇒  J,C,H,A are concyclic [32]
018. J,H,A,B are concyclic [31] ⇒  ∠AHJ = ∠ABJ [33]
019. IA = IB [12] & IJ = IA [14] ⇒  I is the circumcenter of \Delta JBA [34]
020. I is the circumcenter of \Delta JBA [34] & I,J,A are collinear [15] ⇒  BJ ⟂ AB [35]
021. I is the circumcenter of \Delta JCA [17] & I,J,A are collinear [15] ⇒  CJ ⟂ AC [36]
022. BJ ⟂ AB [35] & CJ ⟂ AC [36] ⇒  ∠ABJ = ∠JCA [37]
023. J,C,H,A are concyclic [32] ⇒  ∠JCA = ∠JHA [38]
024. ∠AHJ = ∠ABJ [33] & ∠ABJ = ∠JCA [37] & ∠JCA = ∠JHA [38] ⇒  HJ ⟂ HA [39]
025. I,J,A are collinear [15] & IJ = IA [14] ⇒  I is midpoint of AJ [40]
026. HJ ⟂ HA [39] & I is midpoint of AJ [40] ⇒  AI = HI
==========================

 

입력: 2024.05.05 20:32