본문 바로가기

Contact English

【국제수학올림피아드】 IMO 기하 문제 풀이 (2020년 ~ 2024년)

 

IMO 기하 문제 풀이 (2020년 ~ 2024년)

 

추천글 : 【기하학】 IMO 기하 문제 풀이 종합 


 

IMO 2020, Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hold:

 

PAD :PBA :DPA = 1 : 2 : 3 = ∠CBP :BAP :BPC.

 

Prove that the following three lines meet in a point: the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.

 

풀이. Evan Chen의 풀이 

 풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. ( 더 어려운 문제) (ref)

 

 

IMO 2021, Problem 3. Let D be an interior point of the acute triangle ABC with AB > AC so that ∠DAB = ∠CAD. The point E on the segment AC satisfies ∠ADE = ∠BCD, the point F on the segment AB satisfies ∠FDA = ∠DBC, and the point X on the line AC satisfies CX = BX. Let O1 and O2 be the circumcenters of the triangles ADC and EXD, respectively. Prove that the lines BC, EF, and O1O2 are concurrent.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry로 풀리지 않았습니다. (ref)

 

 

IMO 2021, Problem 4. Let Γ be a circle with center I, and ABCD a convex quadrilateral such that each of the segments AB, BC, CD and DA is tangent to Γ. Let Ω be the circumcircle of the triangle AIC. The extension of BA beyond A meets Ω at X, and the extension of BC beyond C meets Ω at Z. The extensions of AD and CD beyond D meet Ω at Y and T, respectively. Prove that

 

AD + DT + TX + XA = CD + DY + YZ + ZC.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하는 AlphaGeometry 모드로 풀립니다. ( 더 어려운 문제) (ref)

 

 

IMO 2022, Problem 4. Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a point T inside ABCDE with TB = TD, TC = TE and ∠ABT = ∠TEA. Let line AB intersect lines CD and CT at points P and Q, respectively. Assume that the points P, B, A, Q occur on their line in that order. Let line AE intersect CD and DT at points R and S, respectively. Assume that the points R, E, A, S occur on their line in that order. Prove that the points P, S, Q, R lie on a circle.

 

풀이. Evan Chen의 풀이 

풀이. AlphaGeometry를 사용할 때, 새로운 점을 추가하지 않는 DD+AR 모드로 풀립니다. (ref)

 

==========================
 * From theorem premises:
B C D E T A P Q R S : Points
ED = BC [00]
TC = TE [01]
TB = TD [02]
∠TBA = ∠AET [03]
P,A,B are collinear [04]
D,P,C are collinear [05]
Q,A,B are collinear [06]
Q,T,C are collinear [07]
E,A,R are collinear [08]
D,R,C are collinear [09]
E,A,S are collinear [10]
D,T,S are collinear [11]

 * Auxiliary Constructions:
: Points


 * Proof steps:
001. ED = BC [00] & TC = TE [01] & TB = TD [02] (SSS)⇒  ∠EDT = ∠CBT [12]
002. ED = BC [00] & TC = TE [01] & TB = TD [02] (SSS)⇒  ∠DET = ∠BCT [13]
003. ED = BC [00] & TC = TE [01] & TB = TD [02] (SSS)⇒  ∠DTE = ∠BTC [14]
004. ∠EDT = ∠CBT [12] & D,T,S are collinear [11] ⇒  ∠EDS = ∠CBT [15]
005. ∠DET = ∠BCT [13] & Q,T,C are collinear [07] ⇒  ∠DET = ∠BCQ [16]
006. E,A,S are collinear [10] & Q,A,B are collinear [06] & ∠AET = ∠TBA [03] ⇒  ∠SET = ∠TBQ [17]
007. D,T,S are collinear [11] & Q,T,C are collinear [07] & ∠DTE = ∠BTC [14] ⇒  ∠STE = ∠BTQ [18]
008. ∠SET = ∠TBQ [17] & ∠STE = ∠BTQ [18] (Similar Triangles)⇒  TS:TQ = TE:TB [19]
009. TS:TQ = TE:TB [19] & TB = TD [02] & TC = ET [01] ⇒  TS:TQ = TC:TD [20]
010. D,T,S are collinear [11] & Q,T,C are collinear [07] ⇒  ∠STQ = ∠DTC [21]
011. TS:TQ = TC:TD [20] & ∠STQ = ∠DTC [21] (Similar Triangles)⇒  ∠TSQ = ∠DCT [22]
012. ∠TSQ = ∠DCT [22] & D,T,S are collinear [11] & Q,T,C are collinear [07] ⇒  ∠DSQ = ∠DCQ [23]
013. ∠TBA = ∠AET [03] & ∠EDS = ∠CBT [15] & ∠DET = ∠BCQ [16] & ∠DSQ = ∠DCQ [23] (Angle chase)⇒  ∠(AE-CD) = ∠(QS-AB) [24]
014. Q,A,B are collinear [06] & P,A,B are collinear [04] & E,A,S are collinear [10] & E,A,R are collinear [08] & D,R,C are collinear [09] & D,P,C are collinear [05] & ∠(QS-AB) = ∠(AE-CD) [24] ⇒  ∠SQP = ∠SRP [25]
015. ∠SQP = ∠SRP [25] ⇒  Q,S,P,R are concyclic
==========================

 

입력: 2024.05.05 21:54