제 11회
한국수학경시대회(KMC)
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
1. 2 이상의 모든 자연수 n에 대하여 다음 식이 성립함을 보여라. (단, [x]는 x보다 크지 않은 최대 정수이다.) [15점]
[√(n^2+n+1)×√(n^2-n+1)]-[√(n^2+n+1)][√(n^2-n+1)]=n
Solution
n^2<√(n^2+n+1)×√(n^2-n+1)=√(n^4+n^2+1)<n^2+1
⇒ [√(n^2+n+1)×√(n^2-n+1)]=n^2
n<√(n^2+n+1)<n+1
⇒ [√(n^2+n+1)]=n
n-1<√(n^2-n+1)<n
⇒ [√(n^2-n+1)]=n-1
∴ [√(n^2+n+1)×√(n^2-n+1)]-[√(n^2+n+1)][√(n^2-n+1)=n^2-(n(n-1))=n
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
2. 0<x<5,t>0일 때, 다음 식의 최솟값을 구하여라. [15점]
〖(x-t)〗^2+〖(√(25-x^2 )-72/t)〗^2
Solution
(x,√(25-x^2 ))은 제1사분면에 있는 4분원 상의 한 점(①)이다.
또한 (t,72/t)은 제1사분면 상에 있는 점(②)이다.
따라서 (준식)이 의미하는 것은 ①과 ②사이의 거리의 제곱을 의미한다.
그러므로 준식 M에 대하여 M≥(√(t^2+(72/t)^2 )-5)^2을 얻는다.
((t,72/t)을 중심으로 하고 x^2+y^2=25과 내접하는 경우의 반지름을 떠올리자.)
t^2+〖72〗^2/t^2 ≥2×72=〖12〗^2 (∵ 산술-기하평균 부등식)이므로,
M≥(√(t^2+(72/t)^2 )-5)^2≥7^2=49
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
3. 0이 아닌 임의의 실수 a, b에 대하여 다음을 만족시키는 함수 f(x)를 모두 구하여라. [15점]
f(1/a+b)+(ab+1)f(1/b)=f(a+1/b)+(ab+1)f(1/a)
Solution
주어진 식으로부터 아래 두 식을 얻는다.
f(1/a+b)-f(a+1/b)=(ab+1)(f(1/a)-f(1/b))
f(a+1/b)-f(1/a+b)=(1/ab+1)(f(a)-f(b))
두 식을 더하면 아래 식을 얻는다.
0=(ab+1)(f(1/a)-f(1/b)+f(a)/ab-f(b)/ab)
1) ab≠-1: b=1과 b=-1을 대입한다.
0=f(a)-f(1)+af(1/a)-af(1)
0=f(a)-f(-1)-af(1/a)+af(-1)
따라서 다음 식을 얻는다.
2f(a)=f(1)+f(-1)+a(f(1)-f(-1)) (a≠±1)
2) ab=-1: a=±1을 준식에 대입하면(단, b≠∓1 복호동순) 1)의 함숫값임을 알 수 있다.
따라서 f(x)=αx+β (단, α,β는 실수)
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
4. 여섯 개의 실수 x,y,z,s,t,u가 다음을 모두 만족시킨다.
x+y+z=s+t+u=0,〖 x〗^2+s^2=y^2+t^2=z^2+u^2=1
이때, 다음이 성립함을 보여라. [15점]
|xt+yu+zs-sy-tz-ux|=(3√3)/2
Solution
x=cosα,y=cosβ,z=cosγ
s=sinα,t=sinβ,u=sinγ
이때,
z^2=cos^2α+cos^2β+2cosα cosβ=1-u^2=1-(sin^2α+sin^2β+2sinα sinβ)
따라서
2 cos(α-β)=-1 ⇔ α-β=120° or 240°
이렇게 모두 고려하면,
(α-β,β-γ,γ-α)=±( 120°,120,120°)
그러므로 준식은,
|(xt-st)+(yu-tz)+(zs-ux)|=|sin(α-β)+sin(β-γ)+sin(γ-α)|=(√3+√3+√3)/2
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
5. 임의의 자연수 m,n에 대하여 |〖72〗^m-〖65〗^n |의 최솟값을 구하시오. [20점]
Solution
〖72〗^m-〖65〗^n mod 4 mod 5 mod 3 홀짝 판정
7 O O O O
6 X
5 X
4 X
3 O O X
2 X
1 X
0 X
-1 O O O X
-2 X
-3 X
-4 X
-5 O X
-6 X
-7 X
ⓐ mod 4: 〖72〗^m-〖65〗^n≡-1 (mod 4)임을 고려한다.
ⓑ mod 5: 〖72〗^m-〖65〗^n≢0 (mod 5)임을 고려한다.
ⓒ mod 3: 〖72〗^m-〖65〗^n≢0 (mod 3)임을 고려한다.
ⓓ 홀짝 판정: 〖72〗^m-〖65〗^n≡〖72〗^m-(-1)^n≡-1 (mod 11) 이면 n은 홀수이다. (∵ 11∤72)
〖72〗^m-〖65〗^n≡-(-1)^n≡-1 (mod 3)이면 n은 짝수이다.
따라서 최솟값은 7이다.
제 11회
한국수학경시대회
※ 다음 문제를 읽고, 풀이 과정과 답을 명확하게 쓰시오. (답만 쓰면 안 됩니다.)
※ 1번 ~ 4번은 15점, 5번 ~ 6번은 20점입니다.
6. 좌표평면 위에서 원점을 중심으로 하고 반지름의 길이가 1인 원과 그 내부를 D라 하자. 영역 D에 속하는 서로 다른 임의의 n개의 점 A_1 (x_1,y_1 ),A_2 (x_2,y_2 ),⋯A_n (x_n,y_n)에 대하여 다음 부등식이 성립하는 적당한 a_j ∈{-1,1} (단, j=1,2,⋯,n)이 존재함을 보여라. [20점]
(a_1 x_1+a_2 x_2+⋯+a_n x_n )^2+(a_1 y_1+a_2 y_2+⋯+a_n y_n )^2≤2
Solution
우선 사잇각이 120° 이상인(≤180°) 임의의 두 벡터의 합의 절댓값은 1보다 작음을 주목하자.
(∵ |v_1+v_2 |=√(|v_1 |^2+|v_2 |^2+2v_1∙v_2 )≤√(|v_1 |^2+|v_2 |^2-|v_1 ||v_2 | )≤1)
(단, f(x,y)=x^2+y^2-xy가 x,y에 대한 아래로 볼록 함수이므로 경계에서 최댓값을 가짐)
따라서 임의로 주어진 n개의 벡터들 중 사잇각이 120°이상인 임의의 두 벡터를 골라 두 벡터의 합벡터를 구해 n-1개의 벡터들을 고려하는 것으로 대체한다. 이러한 과정을 반복하면 결국 어느 두 벡터의 사잇각도 120°보다 작아진다. a_j ∈{-1,1}에 의해 반대 방향으로 벡터를 뒤집어줄 수도 있으므로 사잇각이 60° 이하인 임의의 두 벡터를 골라 두 벡터의 합벡터를 고려하는 것으로 대체한다. 결국 이러한 조작을 계속하면 임의의 두 벡터의 사잇각은 60°보다 크고 120°보다 작다.
임의의 한 벡터를 기준으로 다른 한 벡터가 놓일 수 있는 영역에 단 한 개의 벡터를 추가한다. 이때 새로 추가된 벡터를 기준으로 다른 한 벡터가 놓일 수 있는 영역과 처음의 한 벡터를 기준으로 다른 한 벡터가 놓일 수 있는 영역의 교집합은 공집합이다.
따라서 단 두 개의 벡터를 고려하는 것으로 충분하다.
(a_1 v_1+a_2 v_2 )^2=(v_1^2+v_2^2 )+2(a_1 v_1 )∙(a_2 v_2 )≤1+1=2
(∵ a_1,a_2를 적당히 하면 (a_1 v_1 )∙(a_2 v_2 )≤0이 된다.)
'▶ 자연과학 > ▷ KMC 수학경시대회 고등부' 카테고리의 다른 글
제 13회 KMC 한국수학경시대회 고등부(2학년) 2차 #01~06 (0) | 2016.06.27 |
---|---|
제 12회 KMC 한국수학경시대회 고등부(2학년) 2차 #01~06 (0) | 2016.06.27 |
최근댓글